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sharpened Patterson map as the map to be ~shifted and a trial 
structure determination was carried out using the modified 
superposition approach described above. The resulting map 
readily identified the positions of all the larger atoms in the 
structure and the correct placement of the origin. (The mid- 
point of the diagonal vector coincided with the crystallo- 
graphic center of symmetry.) Examination of the map 
revealed that of those 67 peaks greater than 70 in height on 
an arbitrary scale (with 435 as maximum) 74% of these 
corresponded to atoms in the structure (50 of the 64 atoms 
in the structure). A standard superposition using the same 
single vector (the diagonal) yielded 300 peaks over 70 in 
height on the same scale and only 21% of these correspon- 
ded to atoms in the structure. 

As a second test case, CP2Fe2(CO)3CS [dicarbonylbis(r/- 
cyclopentadienyl)-#-carbonyl-#-thiocarbonyldiiron ] 
(Beckman & Jacobson, 1979b), another structure that had 
not previously been determined, was used. It contains 160 
non-hydrogen atoms in a unit cell of P2,/c symmetry, i.e. 40 
non-hydrogen atoms per asymmetric unit. Again a peak 
corresponding to a multiple vector was chosen from the 
sharpened Patterson map and a second shift-vector from the 
backshifted map. In this case the vector corresponding to the 
diagonal across the parallelogram did not contain the true 
inversion center and two images resulted. An additional 
vector was readily selected that belonged to one of these 
images and one further superposition using this vector 
yielded a map in which 87% of the peaks greater than 100 in 
height on an arbitrary scale corresponded to actual atomic 
positions. 

We have demonstrated that a modified Patterson super- 
position using multiple vectors is a viable method for 
obtaining a good trial structure and is especially applicable to 
those structures where size and/or low symmetry inhibits 
solution by other conventional techniques. The method also 
involves a relatively minimal amount of computer time. A 
program listing is available on request. 

This work was supported by the US Department of 
Energy, Office of Basic Energy Sciences, Materials Sciences 
Division. 
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Abstract 
It is shown that for any type of motion of atomic nuclei the 
following hold in the Born-Oppenheimer approximation of 
the wave functions: (1) the structure factors for the Bragg 
intensities are given by the Fourier transform of the average 
density in the unit cell, (2) for the Bragg intensities, the 
Boltzmann weight factor of a thermal state appears as a 
factor of the amplitude (and not of the intensity). 

The thermal motions of atomic nuclei constantly change 
the electron density distribution in a crystal. In electron 
density studies it is important to know which density 
distribution is related to the Bragg intensities. Marshall & 
Lovesey (1971) have shown, for neutron diffraction by 
crystals, that the Bragg intensities can be understood to be 
the coherent elastic scattering at average atomic nuclei, 
where the average is taken over all nuclear spin orientations 
and random isotope distributions in the crystal. One would 
expect that a corresponding result would hold for the thermal 
motions of the nuclei in the crystal. Marshall & Lovesey's 
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(1971) calculation was carried out in the convolution 
approximation, which holds rigorously for atomic nuclei. 
But for X-ray diffraction on the electron density distribu- 
tion in the crystal, the convolution approximation breaks 
down in the regions of the chemical bonds, since one cannot 
assume that these density regions move rigidly with any of 
the adjacent nuclei. Hence, for X-ray diffraction, our 
question concerning which density distribution gives rise to 
Bragg scattering is posed in a more general form. In this 
paper we shall discuss it within the limits of the Born- 
Oppenheimer approximation of the wave functions. 

In the Born-Oppenheimer approximation we assume that 
the electron density distribution p(x,Q) rearranges itself 
instantly for every configuration Q of the nuclear positions. 
Hence, the average density is given by 

p(X)av = f p(x,Q) f (Q)  dQ, (1) 

where the distribution function of the nuclear coordinates, 
f (Q) ,  is assumed to be normalized, i.e. 

f f (Q)  dQ = 1. (2) 
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Since the scattering of X-rays occurs much faster than the 
thermal motions of the nuclei, every configuration of the 
density in the crystal, p(x,Q), gives rise to a coherent scatter- 
ing process with the amplitude F(K,Q), with IKI = 
4zr(sin 0)/k. Since there occurs an independent scattering at 
the various configurations of the density, the average 
density diffracted by the crystal is obtained by summing 
over the intensities of all elementary scattering processes; 
i.e. a formula corresponding to (1) also holds for the 
intensity 

J(K)av = f J (K,Q)  f ( Q )  dQ, (3) 

where 

J(K,Q) = IF(K,Q)I 2 (4) 

It is our aim to derive an expression from (3), which 
explicitly contains the Bragg intensity. We start from (4) and 
state that F(K,Q) is the Fourier transform of the density 
distribution p(x,Q). Since, by definition, the crystal is on the 
average periodic, p(X)a  v m u s t  be periodic. In other words: in 
a time long compared to the oscillation periods of the lattice 
waves the density configurations in each cell of the crystal 
will add up to the same average. Hence, the following repre- 
sentation for a given density configuration is expedient 
(Marshall & Lovesey, 1971): 

p(x,Q),= p(X)av + Ap(x,Q). (5) 

Ap(x,Q) denotes the non-periodic deviation from the average 
density at the position x. With (5), we have, by definition, 

f Ap(x,Q) f ( Q )  dQ = 0, (6) 

for all values of x. In order to make use of (4), we now form 
the Fourier transform ofp(x,Q) with the aid of (5), 

F(K,Q) = Y p(X)a v exp (iK. x) dx 

+ f Ap(x,Q) exp (iK. x) dx (7) 

- -  F ( K ) a  v + zJF(K,Q), 

whereby F(K)a v and AF(K,Q) are defined. With (4) and (7) 
we now obtain 

J (K,Q)  = F ( K ) a v F * ( K ) a  v + F ( K ) a  v AF*(K,Q) 

+ F*(K)av AF(~,Q) + 4F(K,Q)AF*(K,Q). (8) 

With (3), we have to integrate over the nuclear coordinates 
Q. The two middle terms in (8) then become zero, as can be 
seen by virtue of (6): 

J AF(K,Q) f ( Q )  dQ 

= ff Ap(x,Q) f ( Q )  dQ exp (iK. x) dx = 0. (9) 

The first term in (8) does not depend on Q and remains 
unchanged because of the normalization (2). Hence we 
obtain from (3) and (8) 

J(K)a v = IF(K)av 12 + f IAF(K ,Q) I2 f (Q)dQ.  
(10) 

The second term in (I0) arises from the deviations from the 
periodic density distribution and thus describes a thermal 
diffuse scattering (TDS). The first term arises from the 
periodic average of the density distribution and, therefore, it 

represents Bragg scattering. With the division of F(K,Q) 
performed in (7), we have 

J(K)nrag  s : I F ( K ) a  v 12, ( 11 a)  

F(K)av = f p(X)av exp (iK. x) dx. (11 b) 

Thus, the structure factor for calculating the Bragg intensities 
is the Fourier transform of the average density in the unit 
cell. Having assumed this situation to hold, we published 
applications in earlier works (Scheringer, 1977a,b, 1978). 

So far we have made use of the periodicity of the average 
density distribution, and a consideration of the possible 
energy exchanges is missing.* We should show that, in the 
Born-Oppenheimer approximation, Bragg scattering is 
purely elastic and TDS purely inelastic. Hitherto, derivations 
were given (on the basis of lattice dynamics) only in the 
harmonic approximation of the nuclear motions and in the 
convolution approximation of the density distribution (see 
e.g. Maradudin, Montroll & Weiss, 1963; Cochran, 1964; 
Cooper, 1970; Willis & Pryor, 1975); a more general deriva- 
tion is not known to the author. In this paper, we cannot 
give a complete derivation, but we shall combine our general 
equation (10) with the key equations of lattice dynamics 
which were derived in the harmonic and convolution approxi- 
mations, in order to establish part of a general derivation. 
The key equations are the conservation of quasi-momentum; 

K = 2zrH + q, 

q = ql for one-phonon scattering, ) (12a) 

q = ql + q2 for two-phonon scattering, etc., 

and the conservation of energy 

hm = hm o + AE(q), (12b) 

where AE(q) represents the energy for the annihilation (+) 
or creation (--) of one or several phonons. H is a point in the 
reciprocal lattice, qi are the wave vectors of the phonons. 
Obviously, (12b) is generally valid. If we assume that (12a) 
is also generally valid, we can easily show that the first term 
in (10) only represents elastic scattering and the second term 
only inelastic scattering. For q = 0 the scattering is, on the 
one hand, elastic and, on the other hand, (12a) now expresses 
Bragg's law. Hence, the first term in (10), which was identi- 
fied to represent Bragg scattering due to the average periodic 
density distribution in the crystal, can only represent elastic 
scattering. It is extended into small regions around the 
reciprocal lattice points in which the first few side maxima of 
Laue's interference function have also to be included (James, 
1948). For q 4= 0 the scattering is purely inelastic, and (12a) 
means that intensity can only be observed between the 
reciprocal lattice points. Hence, the second term in (10), 
which was identified to represent TDS due to the deviations 
from periodicity, can only represent inelastic scattering [as 
long as no other sources of deviations from periodicity 
(structural imperfections) occur, which we do not consider 
here]. We suppose that (12a) is generally valid, since its 
simple form suggests that the only essential requirements are 
the periodicity of the average crystal and, classically, the 
occurrence of the Doppler effect. Calculations of TDS with 
anharmonic motions, but retaining the convolution approxi- 

* This part of the paper was initiated by a correspondence with 
Professor R. F. Stewart, Groningen. 
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marion, were performed by Hahn & Ludwig (1961), Hahn 
(1961) and Ludwig (1967). In these papers, (12a) was not 
explicitly established, but it appears that anharmonieity 
changes the intensity distribution of TDS, but neither its 
loearion between the reciprocal lattice points nor its inelasrie 
nature. 

In a recent paper, Stewart (1977) posed the question 
whether, for the Bragg intensities, the Boltzmann factor of a 
thermal state has to be applied as a factor to the amplitude 
or to the intensity. For the harmonic approximation and 
the convolution approximation (rigid pseudo-atoms), 
Stewart has shown that the Boitzmann factor is a factor of 
the amplitude, in agreement with earlier work of Born (1942- 
1943), but he could not prove this generally. With our results 
above, a general proof can be given. 

We insert (1) into (1 lb) and obtain 

F(K)a, = fJ" p(x,Q) f ( Q )  dQ exp (ilK. x) dx. (13) 

Performing the Fourier transformation in (13) we obtain 

F(K)av = f F(K,Q) f (Q)  dQ. (14) 

To introduce the Boltzmann weight factor, we write with 
Stewart (1977) 

f ( Q ) =  ~ W~Ix~(Q)I 2, (15) 
n 

W,, = exp(--E,JkT)[~, exp (--E,,/kT). (16) 
n 

Note that our f (Q)  is identical with Stewart's t(Q)/f t(Q)dQ. 
zn(Q) are the normalized vibrational eigenfunctions, and E~ 
the eigenvalues of the Hamiltonian of the nuclear motions. 
We insert (15) into (14) and obtain 

F(K)av = ~ Wnf X~(Q)iF(K,Q) z~(Q)dQ. (17) 
/ !  

Inserting (17) into ( l l a )  we obtain Stewart's equation (17). 
Thus, with (17) and (1 la) we have shown that, for the Bragg 
intensities, the Boltzmann factor W, is a factor of F(K,Q), 

but not a factor of If ~ FZn dQI 2- Hence, Stewart's alterna- 
tive equation (21) is not valid for the Bragg intensities, and,  
since it is incompatible with Stewart's equation (17), it is 
generally not correct. In the general formula (3) for the 
average intensity, the weighting is transferred from p(x,Q) to 
the intensities; whereas, for the Bragg intensities, the 
Fourier transform relations (1 lb) and (13) cause the weight- 
ing to be transferred from p(x,Q) to the amplitudes. 

In our derivation of (10), (11) and (17) no model of the 
thermal motions of the nuclei has been assumed. Rather, the 
physical basis is that a crystal must have a mean periodic 
density distribution. A general derivation of (12a) by means 
of lattice dynamics appears to be a difficult project, although 
it seems that the only essential requirement is also the 
periodicity of the average crystal. 
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